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REPORT SUMMARY

SCOPE OF WORK

The Advanced Image Compression Study was originally intended to investigate the

possibility of improving the performance of a bandwidth-compression process by

dissecting the original image into smaller pieces having more uniform content and

varying the algorithm accordingly.

Considerable effort was expended in trying to determine which of the selected

image subsets were statistically similar. This effort requires a data base much bigger

than the scope of the program allowed. The thrust of the program was changed to

relate the features measured on the image subsets to the actual performance of the

two-dimensional cosine transform operating in a non-adaptive mode at the 1.0 bit per

pixel level.

IMAGE STATISTICS

After selecting the original imagery, approximately 20 subsets of varying content

were digitized. A large group of statistics was computed for each of these subsets.

Included in these statistics are measurements computed directly from the brightness

values over the image, some computed from the brightness values over a local

neighborhood, and those computed from the gradient image. In addition, the Karhunen-

Loeve transform was performed on some of the statistics in an attempt to produce a

smaller set of features that are optimally decorrelated.

CLUSTERING EXPERIMENTS

Parameters computed from the image statistics, as well as parameters related

to the optimum number of bits required to transmit the image, were used as inputs to

a clustering algorithm.

I.o Three different clustering algorithms were considered. The first algorithm required

that the number of clusters as well as the cluster means be specified. Each sample is

then assigned to the nearest cluster. The second approach required that a tolerance be

specified for the distance between clusters. Any sample that does not fall within this
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tolerance from a previously defined cluster will become the initial point in a new
cluster. The third approach assumed that each sample is a separate cluster. The two
clusters with the minimum distance between them are combined to reduce the number
of clusters by one. This continues until all samples are in a single cluster. A
parameter is computed at each stage in the process that is intended to help select the
optimum number of clusters for the data.

REGRESSION ANALYSIS

In order to relate the image statistics to bandwidth compression, a regression
analysis was performed to try to predict the resultant mean square error of the com-
pressed images. If a set of possible compression algorithms were available in an
operational system, the compression would be maximized by applying each algorithm
to an image and then selecting the one that provides the most compression at a given
performance level. This results in an inordinate amount of computation. However, if
each of these algorithms could be predicted for the image from a group of readily
measured statistics, the selection of algorithms is much easier.

As an intermediate step toward this goal, an attempt was made to predict the per-
formance of a single compression algorithm, namely the two-dimensional discrete

cosine transform. A multiple linear regression analysis was performed, using the
jack-knife method, in which all of the images but one are used for training. The
resultant image is then used to predict the performance of the algorithm for the
remaining image not used in the training set.

ix



EVALUATION

The work performed in this effort has given the Air Force important

information which will advance image compression technology and contribute

greatly towards accomplishing the goals of technical program objective

(TPO) R2C. The effort has demonstrated that assigning various image

compression algorithms to subareas within an image for optimum compression

of the overall image is a difficult task, and that given the correct image

statistics, the performance of a particular image compression technique

can be accurately predicted. This knowledge is essential for the develop-

ment of automated image compression systems.

DOUGLAS J3. PRASKA, ML, USAF
Project Engineer
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Section 1

INTRODUCTION AND SUMMARY

1. 1 SCOPE

The Advanced Image Compression Study was originally intended to investigate the
possibility of improving the performance of a bandwidth compression process by
dissecting the original image into smaller pieces, having more uniform content, and
varying the algorithm accordingly. The contractual statement of work was written
around this concept. However, after lengthy discussions with RADC, emphasis was
shifted. Initially, the thrust was to determine statistics that could be used to partition
the image to optimize subsequent compression. Considerable effort was expended to
determine which of the selected mage subsets were statistically similar. For reasons
described later, this effort requires a data base much greater than the scope of the
program allowed. The thrust of the program was changed to relate the features mea-
sured on the image subsets to the actual performance of the two-dimensional cosine
transform operating in a non-adaptive mode at the 1. 0-bit-per-pixel level. The cosine
transform was selected because it is generally accepted to be nearly optimum. As a
result, the work reported herein deviates from the original statement of work.

1.2 IMAGE STATISTICS

The general direction of the efforts on this program can be seen in the diagram of
Fig. 1-1 and are briefly outlined below. After selecting the original imagery, approxi-
mately 20 subsets of varying content were digitized. A large group of statistics was
computed for each of these subsets. Included in these statistics are measurements
computed directly from the brightness values over the image, some computed from the
brightness values over a local neighborhood, and those computed from the gradient

image. The brightness statistics include the mean, variance, dynamic range, skewness,
kurtosis, and power spectrum. The local neighborhood statistics are the mean value,
the dynamic range, and the maximum to minimum brightness ratio over the neighbor-
hood. The mean and variance of these parameters were computed over all neighbor-
hoods in the image. Neighborhood sizes of 2, 4, 10, 25, and 50 were utilized. The
mean and variance of the gradient image were computed to provide edge density informa-
tion.

As indicated in Fig. 1-1, these statistics were used in a number of ways. An

attempt was made to extract Information using a two-input scatter diagram. The only
useful data derived from these scatter diagrams is shown in Fig. 1-2, which is a plot
of the maximum brightness minus the average versus the average minus the minimum
brightness. This diagram Is, In effect, a measure of the non-symmetry in the

brightness histogram. An examination of this data shows that natural subjects such as
water, fields, woods, and marshes tend to fall above the "slope = 1/3" line and tend to
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cluster In the lower left region of the plot, which indicates that the range (MAX-MIN)
is also small. On the other hand, subjects with man-made objects such as ships, planes,
houses, etc. tend to fall below the "slope = 1/3" line and are generally higher in dynamic
range. This same grouping is later verified, using a clustering algorithm on the two
plotted parameters.

It became obvious that a more comprehensive method of evaluating the statistical
measurements was needed. This led to the evolution of clustering techniques and
regression analysis. The clustering techniques were used to group the images and the
regression analysis was used to predict the performance of the 2D-coslne transform
compression algorithm.

Before applying the clustering technique to the statistics, an a:ftnipt was made to
reduce the number of statistics required. Since many parameters are being measured
for each subject, the set of measurements are surely not independent. One approach
suggests that transforming the set of parameters into another pseudo set of parameters
that are uncorrelated should reduce the number of inputs required to group the images.
The Karhunen-Loeve transform is such a process. Not only does it produce an uncor-
related set of coefficients, but they are in descending order of statistical importance.
Consequently, the clustering technique was applied to the trumcated output of the K-L
transform of the statistics rather than the statistics themselves. In parallel with this
work, the two-dimensional DCT was performed on each of the original subsets using a
block size of 16 by 16. The variance of each coefficient taken from all the transform
blocks in the subset was also computed. From the coefficient variances, a parameter
was computed that is related to the optimum number of bits required to transmit the
subset using the 2D-DCT. This parameter, in conjunction with data obtained from the
statistical analysis of the subsets, was used as input to a two-dimensional clustering
algorithm.

The cosine transformed subsets were also quantized to one bit per pixel and in-
verse-transformed to obtain an approximation to the original subset. The mean-
square error was computed for each reconstructed subset with the intention of using
it with the statistical data in the clustering algorithm.

1.3 CLUSTERING ALGORITHMS

Three different clustering algorithms were considered. The first algorithm required
that the number of clusters as well as the cluster means be specified; each sample is then
assigned to the nearest cluster. The second approach required that a tolerance be
specified for the distance between clusters, and any sample that does not fall within this
tolerance from a previously defined cluster will become the initial point in a new cluster.
The third approach assumed that each sample is a separate cluster. The two clusters

1 R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, New York;

John Wiley & Sons, 1973, pp. 234,235.
2 R. 0. Duda and P. E. Hart, op. cit.
3 G. B. Coleman, 'Image Segmentation by Clustering', Univ. of Southern California,
Image Processing Institute, Report USCIPI 750, p. 31, July 1977.
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* with the minimum distance between them are then combined to reduce the number of

clusters by one. This continues until all samples are in a single cluster. A parameter

Is computed at each stage in the process, which is intended to help select the optimum

number of clusters for the data.

Each of these clustering algorithms has a limitation. The first algorithm requires

prior determination of the number of clusters and the general location of each cluster.

The second algorithm requires that a distance be selected. Depending upon the distance

chosen, different clusters may result. For example, the sum of squares distance

[XiX 2E . n , x =21 ( _ (x 1  2 )2) 12itX1- = 1 E (i - x2)used in the experiments

performed, is best for dense, clearly separated clusters of odd shapes. A nearest-

neighbor distance criterion tends to form long chain-like clusters. A furthest-

neighbor distance criterion has a tendency to form compact clusters that are roughly

equal in size. 2 The third method seemed to have the most promise. The limitation for

this third method was that the optimum number of clusters was often ambiguous. To

obtain a unique optimum, it is necessary for a human observer to use judgement as to

what comprises good clustering. 3

The optimum may be ambiguous due to the limited amount of data used in the

experiments.

All of the clustering methods considered seem to impose a particular structure on

the data, rather than to find structure in the data. Not knowing what this structure

should be, i.e. how the images should be grouped for bandwidth compression, was one

reason behind the decision to discontinue efforts involving clustering. Another important

reason for this decision was that clustering techniques require much more data than was

available. At least 100 items should be clustered in order to have reasonable confidence

in results obtained from clustering.

1.4 REGRESSION ANALYSIS

Because of these difficulties, a different approach was considered. If a set of pos-

sible compression algorithms were available in an operational system, the compression

would be maximized by applying each algorithm to an image and then selecting the one

that provides the most compression at a given performance level. This results in an

inordinate amount of computation. However, if the performance of each of these

algorithms could be predicted for the image from a group of readily measured statistics,

the selection of algorithms is much easier.

[* As an intermediate step toward this goal, an attempt was made to predict the per-

formance of a single compression algorithm, namely the two-dimensional discrete

cosine transform. A multiple linear regression analysis was performed using the Jack-

knife method, in which all of the images but one are used for training. The last image

5



is then used to test the process. This is repeated using each one ol the images as the

one left out for testing. The independent variables in the process are the measured
statistics and the dependent variable is the compression performance (i. e. mean square

error - MSE). The regression process defines a surface in n-dimensional space that fits

the available data points as well as possible. The resultant equation is then used to predict

the performance of the algorithm for the remaining image not used in the training set.

Only limited success was achieved with this performance prediction. Very few of the

coefficients in the resultant regression equation are non-zero. This implies that most

of the statistics used in the process are insignificant for predicting the MSE. This does

not mean that the technique Is unusable, but only that the proper set of statistics may not

have been found.

When the dependent variable in this process is changed to tle nIuljber of frequency

coefficients required to limit the MSE cue to truncation of the spectrum to 0.25%, the

resultant regression equation proves to be a good predictor. This parameter is

directly related to the power spectrum, which is also represented 1. some of the

independent variables input to the regression process. The encouraging results obtained

when trying to predict this dependent variable indicate that the process is usable when
the appropriate statistics are used.

The very limited number -4 images used in this evaluation is ii sitticient to provide

strong conclusions or high confidence levels in the apparent CoflCJlufl,,is.

As an outgrowth of this work, the possibility of using simple tlatistical features to

direct an adap*ive 2D-cosine algorithm is attractive. This approac h is )riefly outlined
In Section 9.

I.
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Section 2

SELECTION OF IMAGERY

The first task in this study effort was to obtain imagery from Rome Air Develop-
ment Center (RADC) that contained a wide variety of information. Initially some 49
images were selected from the RADC data base. Positive transparencies were pre-
pared and supplied to RCA. The Images provided a wide range of targets and background.
When the positive transparencies were viewed, It was apparent that many of the shadows
and highlights were saturated. Since the intended use of the pictures required that many
statistics be computed from the digitized version of these images, it was decided to
select a different data set.

A roll of film was obtained, from RADC, which contained a reasonable range of
scene content and which does not appear to be saturated. The negatives were also
supplied to RCA for tis roll. Nine frames were selected from this Imagery and are
shown in Figs. 2-1 through 2-9. From these nine frames, 21 subsets were chosen to
be digitized. These subsets were chosen to include various terrains and different
amounts of detail. These subsets are outlined and identified on the images in Figs.
2-1 through 2-9.
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Fig. 2-2. Frame 4083.
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Fig. 2-3. Frame 4109.
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Fig. 2-4, Frame 4120.
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Section 3

DIGITIZING THE SUBSETS

In order to obtain a set of digitized images with uniform quality, three topics
related to the digitizing process must be considered. These include the scanning spot
size, the film density vs. digital number transfer function of the digitizing device,
and the MTF of the imagery.

3.1 SCANNING SPOT SIZE AND MTF

The first set of imagery obtained from RADC contained considerable data at a
scale of 2000:1. The intention was to scan the images using a five-rail spot, which
results in a corresponding spot spacing on the ground of 10 inches. The images in
Figs. 2-1 through 2-9, however, have approximately a 6000:1 scale. Scanning with
a five-mil spot would represent a sample spacing of 30 inches on the ground. This
spot size would result in an extremely poor rendition of the original imagery. In order
to determine the correct scanning aperture to use in digitizing the images, the MTF
of the original transparencies was computed. Edges at random orientation in the film
were scanned on a Joyce-Loebl microdensitometer to provide the edge response. This
edge response was used to compute the MTF as described in Appendix A.

The amplitude of the complex modulation transfer function is the familiar MTF
along the direction perpendicular to the edge. Figs. 3-1 through 3-6 show some of the
MTF curves computed for the randomly oriented edges. Since the plots in Figs. 3-1
and 3-6 show the MTF falling off considerably sooner than the others, an investigation
was undertaken to determine if this required corrections. Three additional edges at
approximately the same orientation were scanned from the same transparency con-
taining the edge which produced Fig. 3-6. Two of these three scans produced MTF
that which were greater than 0. 1 out to 25 cycles/mm. It was therefore concluded that
the low MTF edges were due to the actual edge being scanned rather than some correc-
table phenomenon such as aircraft motion.

Figure 3-7 shows the MTF of a circular scanning aperture. With a 5-mil diameter
and 5-mil spacing, the sampling frequency is:

1
f = 5(0.0254) = 8 cycles/mm.s

This implies that anything above 4 cycles/mm will not be reproduced in the sampled
image. A more appropriate sampling frequency for these images would be above 20
cycles/mm, where the MTF falls below 25%. A circular aperture with 1-2/3-mil

|. diameter corresponding to a sampling frequency of 24 cycles/nm was therefore used to
digitize the subsets. No MTF correction was applied to the digitized images.
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IF AN IMAGE IS SAMPLED WITH
A SAMPLE SPACING = 2a, THE

1.0 SAMPLING FREQUENCY IS 2a
1/2a CYCLE/mm AND NYQUIST

IS 1/4a CYCLE/mm

0.9

0.8-

0.7-

0.6-

0.5/

0.3-

0.2-

0.1

0 fs/2 fs

FREQUENCY IN CY/mm

Fig. 3-7. MTF of circular aperture with radius a in millimeters.

3.2 FILM DENSITY VS. DIGITAL DATA

A correction was applied to the digital data in order to maintain a linear (slope=-1)
relation between log digital counts from the A/D converter and density on the positive
transparency being scanned. The correction that was applied to the data is given by:

Corrected Data = (Scanner Output) 1/QX 256

256

This form of correction is used, since the sc.anner output is proportional to trans-
mittance. (See Appendix B for details.)

At the time the positive transparencies were digitized, -a standard step wedge
(made on the same film type) was also digitized. The resulting plot shown In Fig. 3-8
indicates a value of Q of 1. 16. This value was used to correct all the digitized outputs.
Failure to perform the Q correction on the digitized imagery will result in a reduced

|o dynamic range output when rewritten on film. This assumes that the write-out
process is controlled so that the plot of log digital numbers vs. film density Is of
unity gamma.
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Q A DENSITY

1.52 7 1.52 -0.66=0.86

MI1SSION NO. ROLL

080-0 10 0

0.4
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Section 4

STATISTICS COMPUTED FROM THE SUBSETS

The 21 subsets that were digitized are listed in Table 4-1, which gives their size
as well as a brief description of their contents.

Many measurements were made on the subsets in an attempt to find parameters that
will facilitate the grouping of images for compression. The measurements can be
divided into three different types, namely those computed directly from the brightness
values over the image, those computed from the brightness value over a local neighbor-
hood, and those computed from the gradient image. The different statistics are
described in the following.

4.1 STATISTICS COMPUTED FROM ENTIRE SUBSET

The measurements made on the brightness values of the pixels are listed in
Table 4-2. These statistics were computed from the definitions given below. I (x, y)
is the brightness value of the image sample at location x, y in the image, where x goes
from I to N and y goes from I to M.

The mean and variance of the brightness values in the image provide a measure
of the average gray level and the spread about that level.

N M

Mean 1 N E_NM I (x,y)
x=1 y=l

Variance N'M E , I(xy)2 - Mean2

x=1 y=l

The maximum and minimum provide Image dynamic range data.

Maximum = Largest brightness value in image
Minimum = Smallest brightness value in image

I.

1.

26

me"



0 L

z
p4O

-4

Uzb U2 m ceUT

E-4

1%1

> >4

w~0 00 U 00 00 00 0 u
m m m 0 mC - co m~. Go I

0001~~ Cd 
71tcO~0-E-4 A .4 -

m i il o $ 1 2 ) ;

00

E- f 
27

C1 O 0 0 0 0 00 0 C >(



C40.-' C; C; 0c; t C; C; C; C; C; C; C

11 f

0 - tCN t- 0 0fC 0 M " 441 0 l.4 0 -4 -4

z
E--

- 4 x 0 -V40 4w = L - -W4C1c)t > L

ro 1 >m d o(

0 OC'-4 i -4 orIL t m l -0 t oL

Lo co '

1- -O w t t 1- -4V4 .4 x -4

10 .f "i - 1 ~0 ~ . Ci 00 Cl! 10 Ci 00 1

00;C~ 1 C4a ;a 0m004C 0L qmm
Cd 0 tO -4i L-M - 0 

4
lr4 00 10 It e)o O t

h~~~ M. __ _ _ __ _ _ __ _ _

'I4
-4 t -4 0 t 0 28

t4a -IC ;L .( C 6C 6_ 1



The skewness is a measure of the non-symmetry in the brightness histogram about
the mean.

2
113

Skewness P
3

P 2

where: 11n is the nth central moment defined as:

I N M n
P : --M (I(x,y) - MEAN)

x=1 y=1

The kurtosis is a measure of the shape of the brightness histogram as compared to
a normal distribution. For a normal distribution, the kurtosis is zero. When the
kurtosis is less than zero, the distribution is more flat than normal and when it is
greater than zero, the distribution is more sharply peaked.

Kurtosis - 32
P2

The correlation coefficients are a measure of redundancy in the data samples at a
fixed pixel separation in the orthogonal directions. For this work, a sample separation
of one pixel has been used.

Correlation Coefficients:

where I = Mean of image samples

x N Mx y

NM, 29
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Figures 4-1 through 4-3 show the power spectral density (PSD) for each of the 21
subsets. The curves represent the average of the PSD computed for the x and y
directions, which was computed along the x and y axes for each subset. A least-square
smoothing operation was performed along each axis and the results were then averaged
and normalized to obtain an average PSD curve for the subset. One way to utilize the
PSD data in a subset discrimination process is to split the curve into three, equal-size
frequency bands. The dynamic range of the PSD curve in each of the bands describes the
shape of the curve by defining the shape of a linear segment over each band. Table 4-3
shows the dynamic range data for the 21 subsets. Note that a higher dynamic range in a
frequency band indicates a steeper slope in the PSD curve. Another way to use this data
is simply to take the value of the PSD at specific frequencies.

4.2 STATISTICS COMPUTED FROM LOCAL NEIGHBORHOODS

For each of the available subsets, the average value, max. -min., and max. /min.
were computed for each n x n area in the subset. The mean and variance of these
parameters over the entire subset was then computed. These calculations were re-
peated for all subsets using values of n equal to 2, 4, 10, 25, and 50. The resulting
measurements are normalized and plotted as a function of n in Fig. 4-4 through 4-18.

The choice of normalization factor is arbitrary, but the choices seem to be reason-
able. The shape of these curves appears to be influenced by both the relative size of
objects and the number of objects in the subset. For example, many of the figures tend

to make subsets RM43 and RM47 stand out from the rest. In fact, these two subsets are
considerably different from the others. RM43 contains a very high density of small
objects of similar shape, while RM47 contains practically nothing.

4.3 GRADIENT STATISTICS

The differentiation of images tends to accentuate edges. Any derivative operator
can therefore be used to detect edges, since the value of a point represents the strength
of any edge at that point. For digital images, differences are normally used to approxi-
mate the derivatives. One such operator is the gradient, which is defined as:

If (i,j) - f (i-1,j)]2  + [f (ij) - f (i,j-1)] 2 1/2

One approximation to the gradient often used is:

Maximum I f (i,j) - f (r,s)

where r, s ranges over either four or eight neighbors of the point f (i, j). The gradient
was computed for all the subsets under study using the maximum difference of the four
horizontal and vertical neighbors. Table 4-4 shows the resulting values for the mean
and standard deviation of the gradient images.
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TABLE 4-3. DYNAMIC RANGE IN EACH OF FOUR FREQUENCY

BANDS IN THE POWER SPECTRAL DENSITY

Tape No. Band 1 [dB] Band 2 [dB] Band 3[dB] Band 4 [dBj

RM37 30.8 12.7 7.4 51.0

RM38 28.3 7.5 9.1 45.0

RM39 42.3 6.8 4.4 53.6

RM40 36.1 16.0 7.3 59.6

RM41 42.9 10.1 6.0 59.0

RM42 32.0 10.0 9.5 51.5

RM43 27.9 8.3 11.1 47.3

RM44 35.0 16.3 11.1 62.4

RM45 29.2 9.9 4.4 43.6

RM46 33.9 8.8 10.7 53.4

RM47 40.6 7.5 5.5 53.7

RM48 27.1 9.4 8.7 45.3

RM49 42.1 2.7 2.7 47.5

RM50 43.6 12.4 7.4 63.4

RM51 38.5 8.9 7.5 54.9

RM52 38.6 9.9 7.3 55.8

RM53 32.6 12.5 10.2 55.3

RM54 31.4 11.0 9.6 52.0

RM55 34.5 16.5 14.4 65.4

RM56 33.4 12.1 15.5 61.0

RM57 33.4 16.2 16.4 66.0

Band 1: 0-0. 15 Cycles/Samaple
Band 2: 0.15-0.31 Cycles/Sample
Band 3: 0.31-0.46 Cycles/Sample
Band 4: 0-0.46 Cycles/Sample

" 1
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TABLE 4-4. STATISTICS FROM THE GRADIENT IMAGES COMPUTED

FROM THE FOUR HORIZONTAL AND VERTICAL
NEIGHBORS

Gradient

Tape No. Mean Standard Deviation

RM37 3.26 6.09

RM38 10.15 14.42

RM39 3.8 2.34

RM40 3.46 1.85

RM41 1.44 1.08

RM42 6.57 9.29

RM43 13.46 16.98

RM44 3.24 3.35

RM45 8.17 10.44

RM46 7.95 10.62

RM47 2.51 1.69

RM48 6.92 7.71

RM49 0.3 0.53

RM50 2.14 1.54

RM51 6.07 3.55

RM52 3.78 3.44

RM53 7.25 9.12

RM54 3.62 6.07

RM55 6.97 8.1

RM56 2.18 5.54

RM57 4.85 5.71
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Section 5

K-L TRANSFORM OF STATISTICS VECTOR

The next step in this effort was to try to relate the measurements made on the
image subsets to the performance of a specific compression algorithm. The first
attempt at doing this involved the use of clustering algorithms to group the subsets.
The first problem, however, is to determine what the inputs to the clustering algorithm
should be. Since many parameters were measured for each subset, chances are fairly
good that some of them are correlated. One approach suggests that transforming the
set of parameters into another, uncorrelated set of parameters should reduce the num-
ber of inputs required to classify a given subset. The Karhunen-Loeve (K-L) transform
is a process that will optimally decorrelate a set of data. The K-L transform matrix
was obtained from 20 parameters from each of 19 image subsets. The transform was
then performed on the parameters of each scene. Table 5-1 shows the set of image
parameters used as input to the transform. The magnitudes of these features differ
considerably. For example, the average correlation is by definition no larger than
unity, while other features may be several orders of magnitude larger. In order to
weigh each feature equally, the average of each feature over the 19 image subsets was
normalized to 100. Table 5-2 is the scaled input data for the first eight image subsets.
The set of eigenvalues computed for this data is given in Table 5-3. The first eight
basis vectors for the K-L Transform are shown in Table 5-4 and the ouput of the
K-L transform operating on the scaled input data is given in Table 5-5 for the same
eight subsets. This data was used to derive inputs to a clustering process in an attempt
to group the subsets.

a.

.b
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TABLE 5-1. ONE SET OF IMAGE PARAMETERS USED AS

INPUT TO K-L TRANSFORM

1) Variance

2) maximum - mean
mean - minimum (MAX-MEAN)/(MEAN-MIN)

3) Average correlation

4) Power spectral density at .09 cyc/sample

5) Power spectral density at .18 cyc/sample

6) Power spectral density at. 31 cyc/sample

7) Power spectral density at .46 cyc/sample

8) Variance of the means of 2 X 2 areas

9) Variance of the means of 10 X 10 areas

10) Variance of the means of 50 X 50 areas

11) Average gradient

12) Variance of the gradient

13) Variance of the means of 2 X 2 areas normalized by scene variance

14) Variance of the means of 10 X 10 areas normalized by scene variance

15) Variance of the means of 50 X 50 areas normalized by scene variance

16) Average ratio of max to min over 10 X 10 area normalized by average
ratio over 2 X 2 area

17) Average ratio of max to min over 50 X 50 area normalized by average
ratio over 2 X 2 area

18) Variance of the ratio of max to min over 10 X 10 area normalized
by variance of ratio over 2 X 2 area

19) Variance of the ratio of max to min over 50 X 50 area normalized
by variance of ratio over 2 X 2 area

20) Skewness
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TABLE 5-3. EIGEN VALUES

1 83971.12500

2 53959.08200

3 29199.74200

4 11952.01900

5 3622.87620

6 1546.10100

7 1220.70840
8 642.83105
9 218.64494

10 156.82895

11 
90.93962

12 47.47408

13 
19.60738

14 
14.31018

15 2.05236
16 1.07275
17 0.39676
18 0.02022
19 -0.00287
20 -0.00592
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Section 6

CLUSTERING EXPERIMENTS

As shown in Fig. 1-i the features computed from the image subsets, as well as

the K-L transform of a portion of those features, were used as input to clustering
techniques. The purpose of this effort was to determine if the image subsets could be
grouped in any way that related to the performance of a bandwidth compression algorithm.

Three clustering algorithms were considered for this work. The clustering
algorithm, as described by Fukunaga 4 requires that the number of clusters be known,
as well as the mean location of each cluster. Since this information is unknown, the

algorithm was discarded. The algorithm explained by Coleman5 requires that a tolerance

be specified for the distance between the clusters. This technique was discarded also,

since any information of the nature would be purely a guess. The third approach,
described by Duda and Hart, 6 is the one that was used. In this algorithm, each sample
is assumed to be a separate cluster.

Successive iterations are performed to combine the two clusters having the minimum

distance between them. This is continued until only a single cluster remains.

The minimum-distance criterion used to combine clusters can be computed in a
number of ways. Some possible measures include the distance between cluster means,

the distance between the two farthest points of the clusters, and the distance between
the two nearest points of the clusters. There may be variations in the resulting clusters,
depending upon which method is chosen. All of our experiments utilized the distance
between cluster means as the criterion for combining clusters. At each interation, a

parameter is computed, which is intended to indicate the optimum number of clusters for

the data. To compute this parameter (called beta), two matrices must be computed,

namely the within-scatter matrix and the between-scatter matrix. The within-scatter
matrix is a measure of how scatterel the points in a given cluster are. The between-

scatter matrix is a measure of how scattered the clusters are in relation to each other.

The within-scatter matrix is defined as the product of a matrix P and its transpose

matrix pT, where P is an M x N matrix defining M points in N-dimensional space after

subtracting from each point the mean associated with the cluster to which it has been

assigned.

4 K. Fukunaga, Introduction to Statistical Pattern Recognition, New York; Academic

Press, 1972, pp. 324-326.
5 G. B. Coleman, op. cit.

6R.0. Duda and P. E. Hart, op. cit.
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The between-scatter matrix is defined similarly to the within-scatter matrix,
excepting that from each point, the mean of all the cluster means is subtracted rather
than the mean of the cluster to which the point has been assigned.

The parameter beta is the product of the traces of these two scatter matrices,
where the trace of a matrix is the sum of the diagonal elements. A maximum value
for beta implies an optimum number of clusters for the data.

Two different scatter diagrams were plotted in an effort to investigate the
relationship between the transform of the measured statistics and the number of bits
required to transmit the cosine transform of the image with minimum mean square
error (MSE). Since the optimum number of bits for quantizing the cosine transform
coefficients is proportional to the logarithm of the variance of the coefficient, them2
parameter I log a . was used as an indicator of the total number of bits required to

iji
transmit the imagt with minimum MSE. In Fig. 6-1, the length of the vector made up
of the first six K-L transform coefficients is plotted against the sum of logs. Four
clusters were indicated by the beta parameter as being the optimum number. Figure
6-2 is a scatter diagram of the sum of logs plotted against the first K-L transform
component. In this case, six clusters are indicated. The trend of the beta parameter
for the two figures is given in Fig. 6-3. The content of the subsets grouped by the
clusters shown in the figures is presented in Table 6-1. These results are not very
encouraging instinctively, since we do not expect images of fields to be similar to
images of storage tanks or ships in terms of bandwidth compression.

In retrospect, however, it is not surprising that the results are confusing, since
the sum-of-logs parameter does not represent constant quality. In other words, the
cluster in Fig. 6-1, which contains both the image of a field (RM4l) and the image of
ships (RM42), may imply that a similar number of bits is required to represent those
images with minimum MSE, but the resulting images may have totally different quality.

It did appear that two simple features related to the shape of the brightness histogram
tended to isolate image subsets that contained man-made objects. A two-parameter
clustering was performed using the brightness maximum minus the mean of one
parameter and the brightness mean minus the minimum as the other parameter. Table
6-2 shows the resulting clusters that were determined with a description of the image
content.

It will be noticed that the images assigned to clusters 1 and 2 are all natural scenes
(except RM44), while cluster 3 contains only images that have man-made objects in
them. RM44 appears to be out of focus, which may explain why it fell within the cluster

* - that it did.
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X = NUMBER PROPORTIONAL TO NO. OF BITS REQUIRED TO

TRANSMIT COSINE TRANSFORM WITH MINIMUM MSE.
2 LOG1 0 1"1

Y = LENGTH OF VECTOR MADE UP OF FIRST SIX K-L TRANSFORM
COEFFICIENTS USING SCALED INPUT FEATURES.
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Fig. 6-1. Scatter diagram; first six K-L transform coefficients
vs. sum of logs.
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TABLE 6-1. SUBSET CONTENT GROUPED BY
CLUSTERS DETERMINED FROM
FIGURES 6-1 AND 6-2.

FIGURE 6-1. FIGURE 6-2.

Subset Cont Subset Content

RM43 Parking Lot RM46 Storage Tanks
RM46 Storage Tanks RM55 Chemical Plant

RM49 Water RM43 Parking Lot

RM44 Railroad RM44 Railroad
RM55 Chemical Plant RM57 Chemical Plant

'S RM56 Airplanes
RM57 Chemical Plant RM42 Ships

RM45 Storage Tanks
RM39 Fields RM53 Residential
RM40 Woods
RM41 Fields RM39 Fields
RM42 Ships RM40 Woods
RM45 Storage Tanks RM41 Fields
RM47 Marsh RM47 Marsh
RM48 Railroad RM48 Railroad
RM50 Golf Course RM50 Golf Course
RM51 Marsh RM51 Marsh
RM52 Woods and Marsh RM52 Woods and Marsh
RM53 Residential RM54 Airplanes
RM54 Airplanes RM56 Airplanes

RM49 Water

I.
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TABLE 6-2. CLUSTERS GENERATED USING TWO PARAMETERS
(MAX-MEAN AND MEAN-MIN).

Cluster Subset Content

1 RM41 Fields
RM49 Water

2 RM39 Fields

RM40 Woods
RM44 Railroad
RM47 Marshland
RM50 Golf Course
RM51 Marshland
RM52 Woods and

Marshland

3 RM42 Ships
RM43 Parking Lot
RM45 Storage Tanks
RM46 Storage Tanks
RM48 Railroad
RM53 Residential
RM54 Airplanes
RM55 Chemical Plant
RM56 Airplanes
RM57 Chemical Plant

I.
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Section 7

COMPRESSION TO ONE BIT PER PIXEL USING
TWO-DIMENSIONAL COSINE TRANSFORM

Seventeen of the nineteen image subsets have been bandwidth-compressed using the
two-dimensional discrete cosine transform (2D-DCT) on 16 x 16 element blocks.
Figure 7-1 is a processing diagram for each 16 x 16 element block within the image.
A non-adaptive process was used, in which each transform block is quantized to an
average of 1.0 bit per pixel. Before quantization, the two-dimensional frequency
coefficients Cij are multiplied by the corresponding filter value Fij. The purpose of
this frequency-plane filter is to standardize the variance of each coefficient to the same
variance that the Gaussian quantizer matches. The filter weighting for any given image
was generated from the relation:

qaq F.. = o_0 q

(xij

where Gq is the standard deviation that matches the quantizer and uij is the standard
deviation of the i, jth coefficient. The quantizer used is a MAX quantizer, assuming
Gaussian input with zero mean. The number of bits assigned to each of the coefficients
is defined in Fig. 7-2.

After reconstructing the images from the quantized coefficients, the normalized
mean square error (NMSE) was computed with respect to the original images using the
definition:

N M
(iij -( Iij-

i=l jq 1
NMSE N M 100%

i=1 j=1

The resulting NMSE values are listed in Table 7-1. The resulting images com-
pressed to 1. 0 bit/pel along with the corresponding originals are presented in Figs.
7-3 through 7-20.

The NMSE is used as a performance measure for image compression, even though it
admittedly has some limitations as an indicator of subjective quality. This NMSE data
is later used for training data in a regression analysis to predict the performance of the
2D-DCT compression algorithm from the measured statistics.
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ELEEN xD-DC STANDARDIZING QUANTIZER INVERSE INVERSEELEMENT -o 2-OCT FILTER H *'i!H r FILTER 2D-DCTI

BLOCK

APPROXIMATtON
TO 16 x 16 ELEMENT
INPUT BLOCK

Fig. 7-1. 2D-DCT Processing diagram for 16 x 16 transform block.

8 5 5 5 4 3 3 3 3 2 2 2 2 0 0 0

5 5 5 4 3 3 3 3 2 2 2 2 0 0 0 0

5 5 4 3 3 3 3 2 2 2 2 0 0 0 0 0

5 4 3 3 3 3 2 2 2 2 0 0 0 0 0 0

4 3 3 3 3 2 2 2 2 0 0 0 0 0 0 0

3 3 3 3 2 2 2 2 0 0 0 0 0 0 0 0

3 3 3 2 2 2 2 0 0 0 0 0 0 0 0 0

3 3 2 2 2 2 0 0 0 0 0 0 0 0 0 0

3 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 7-2. 1.0 bit per pel bit assignment pattern.
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TABLE 7-1. NMSE VALUES FOR IMAGE SUBSETS
COMPARED TO 1.0 BIT PER PEL

Subset Percent

RM39 0.77

RM40 1.42

RM41 1.39

RM42 1.89

RM43 2.08

RM44 1.85

RM45 1.34

RM46 0. 902

RM47 1.91

RM48 2.74

RM49 17.69

RM50 1.19

RM51 0.541

RM52 2.176

RM53 0.9

RM54 4.266

RM55 0.328

RM56 8.13

RM57 0.669

I.

66



01 1I NAL

1. 0 11 lil-PEL 21)-ICT

Fig. 7-3. RM4O.

67



III T-VE 2t)-OCT

F ig. 7 -1. RA 1 -11.



ORI rI I NAL

I) I t3T-IEL 21)-O)CT
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Fig. 7-s. RA%145 (original).

72



1. ( 111~ T-12EL 21-IDCT

F'ig. 7-9. RAM45 (1.0 'A t per pel 2D )- I )i'1 ).

7:



Ol I UIkA

I. I. I)III T-1 3EL 2D-DCT

Fi. -W



OI INAL

I.) 131T-IEL 2I3-I)CT
Jig. 7-11. 101 .s



OR I Gr I NAL

I 1. 0 IIT-PEL 21)-ICT



Oil I1G I NAL

1. 0) 13 1T-IDEL 21)-tCT
Fi.7-13. 10150.



OR IG INAL

1. 0 If I T-IPEL 21-I)CT

Fig. 7-14. RM51.

78



OJR I GrI NAL

I] I IT-VEL 21)-DCT

[ Fig. 7-15. R152.

71)



OJR IGi I NAL

1. 0I ItIT-IDEL 213-OCT

Fig. 7-l6. RM153.

hso



OR Irv NAL

I. 1.0 111 ,T-IEL 2I)-OCT

'sI



1. (0 111 T-IDEL 21)-ICT

Fig. 7-18. RM55.

1S



OR I yI NAL

I )13 1 T-I'EL 21)-I)CI

Fit".I,\ah



ORICrINA

1.( 0 111T-12EL 2I)-I)CT

FLg. 7-20. i10157.



AO-AO&Z 014 RCA ADVANCED TECHNOLOGY LAOS CAMDEN N ,J F/f 1415
ADVANCED IMAGE COMPRESSION STUDY.(U)
JAN 80 W 8 SCHAMING, JI J RUDNICK( FS0602-77-C-0244

7NCLASSIFIED RADC -TR-79-342 ML

IN

:,/lI/ll/II ToD



,- Lu13 IIII
-2 111111.

H IL " iII1.~8
I1.I25 111111.4 11111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUR[AU OF SIANDARDS-1963 A



-

section 8

PREDICTING THE PERFORMANCE OF
SINGLE COMPRESSION ALGORITHMS

7
Regression Analysis can be used to extract the basic characteristics of the

relationships hidden or implied In data, and to relate these characteristics by a

mathematical equation.

The mathematical equation can be approximated by initially assuming that a linear
relationship with unknown parameters exists. A fitted equation is obtained by esti-
mating the unknown parameters for certain assumptions with the help of existing data.
Tests can be performed to determine the value of the fitted equation in terms of con-
fidence levels for the parameters and responses. Tests can also be performed to
determine whether the underlying assumptions were violated.

If the assumptions are not violated and the required confidence levels are met,
then the mathematical equation can be extremely valuable for predicting the value of
some of the variables from the knowledge of others.

Suppose a linear regression equation is to be established for a response Y in terms
of variables X1 , X2 P •.., Xk (where the Xs are thought to be the complete set of Xs
.deemed necessary and desirable). Stepwise linear regression8 is a method to select
the "best" regression equation, where best implies choosing as many Xs as possible so
that the predictions are reliable, and at the same time choosing as few Xs as possible
In order to minimize costs.

The procedure for stepwise linear regression is to Insert variables in turn until
the regression equation is satisfactory. The order of insertion is determined by using
the partial correlation coefficient as a measure of the importance of variables not yet
in the equation. Variables previously inserted are re-examined at every stage. A
variable that may have been the best single variable to enter at an early stage may
become superfluous at a later stage, because of the mlationships between the variable
and the other variables now in the regression.

7 R. E. Walpole and R. H. Myers, Probability and Statistics for Engineers and Scientists.
New York; Macmillan Publishing Co., Inc., 1972, Chapters 8,9.

io- 8 N. Draper and H. Smith, Applied Regression Analysis, New York; John Wiley & Sons,

Inc., 1966.
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At each step of the regression procedure, an analysis of variance is performed that
provides the necessary information to determine which variables should be removed
from the model and which new variables should be inserted Into the regression equation.
This process is continued until no more variables can be Inserted Into the equation and
no more can be removed.

8.1 APPICATIONS OF REGRESSION TECHNIQUES TO IMAGE DATA

This regression analysis technique has been used to predict the performance of a
single compression scheme when applied to the available subsets. This approach and
Its results are described in the following.

The 37 statistics that were computed for each of 19 scenes were used in this
analysis. These 37 statistics are listed in Table 8-1. Each of the 19 scenes was
compressed, using the 2D-DCT algorithm, and reconstructed; therefore, each scene
has an associated MSE computed from the reconstructed image.

Assuming that a linear relationship exists between the MSE for a given reconstructed
scene and the 37 statistics associated with that same scene, an attempt was made to
characterize this relationship by a mathematical equation using the method of stepwise
regression. After generating the regression equation, tests were performed to see if
the equation predicted MSE accurately, knowing the values of the statistics n the
equation.

Having only 19 scenes available creates certain difficulties, the most Important
being that concrete conclusions cannot be made from 19 observations.

In addition to this problem of not having enough data to make a conclusion, there
Is the immediate problem of deriving maximum benefit from the data available (even
though it involves only 19 scenes). An approach was used that obtains the maximum
amount of information from the available data and at the same time prevents the over-
lapping of the training and testing sets of data. The approach first eliminates a scene,
performs the stepwise regression analysis on the remaining scenes, and then uses the
scene that was left out to test the regression equation. Knowing the MSE associated
with the scene that was left out, the regression equation can be tested to determine the
accuracy of its prediction of MSE. Three selected experiments were performed using
this approach of eliminating one scene at a time, finding the regression equation using
the remaining scenes, and testing on the left-out scene.

The first experiment utilized all 19 scenes in an attempt to predict the MSE from
knowledge of the statistics for a given scene. No further testing, beyond observation of
the predicted MSE values, was required to determine that the predictions were unreliable.

i.
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TABLE 8-1. THIRTY-SEVEN STATISTICS USED IN REGRESSION ANALYS

Statistic Description
No.

1 Variance of brightness samples
2 (1"-MEAN)/(MEAN-MIN)
3 Average correlation coefficient
4 Value on PSD curve at 0.09 cycle/sample
5 Value on PSD curve at 0.18 cycle/sample
6 Value on PSD curve at .31 cycle/sample
7 Value on PSD curve at .46 cycle/sample
8 Variance of 2 x 2 means

* 9 Variance of 10 x 10 means
10 Variance of 50 x 50 means
11 Average of MAX-MIN over 2 x 2 areas
12 Average of MAX-MIN over 10 x 10 areas
13 Average of MAX-MIN over 50 x 50 areas
14 Variance of MAX-MIN over 2 x 2 areas
15 Variance of MAX-MIN over 10 x 10 areas
16 Variance of MAX-MIN over 50 x 50 areas
17 Average of gradient Image
18 Variance of gradient image
19 Average of MAX/MIN over 2 x 2 areas
20 Average of MAX/MIN over 10 x 10 areas
21 Average of MAX/MIN over 50 x 50 areas
22 Variance of MAX/MIN over 2 x 2 areas
23 Variance of MAX/MIN over 10 x 10 areas
24 Variance of MAX/MIN over 50 x 50 areas
25 Statistic 8/Statistic 1
26 Statistic 9/Statistic 1
27 Statistic 12/Statistic 1
28 Statistic 12/Statistic 11
29 Statistic 13/Statistic 14
30 Statistic 15/Statistic 14
31 Statistic 16/Statistic 14
32 Statistic 20/Statistic 19
33 Statistic 21/Statistic 19
34 Statistic 23/Statistic 22
35 Statistic 24/Statistic 22

36 Skewness
* 37 Kurtosis
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In Fig. 8-1, each column is headed with a scene number (RM39 through RM5I), which
indicates the scene that was eliminated, while the regression analysis was performed
on the remaining scenes to find a regression equation. The parameters for the equation
are given in the row for the statistic with which they are associated. The intercept is a
constant In the equation which multiplies no statistic. The actual MSE and the predicted
MSE are given for comparison. The best case, which is when the predicted MSEs equal
the actual MSEs, is illustrated by a straight line with a slope of one when plotted one
against the other. The plot of the actual vs. the predicted MSEs (Fig. 8-2) gives
additional evidence of the poor predictions, since the points do not form a straight line
with slope equal to one.

The second experiment differed from the first in that It eliminated scene RM49 from
the set because the MSE associated with this scene has a much greater magnitude than
the MSEs of the other scenes. In this experiment, different statistics were retained In
the regression equations, but the overall results were not noticeably different (see
Fig. 8-3 and 8-4). Eliminating scene RM49 from the regression analysis did not
cause the predictions to be more accurate.

The third experiment was performed using the same approach as used for the other
two experiments. As in the second experiment, only 18 scenes were used, scene RM49
being eliminated from the analysis. The 18 scenes were being used in an attempt to
predict, not the MSE, but the number of coefficients required to produce 0.25% MSE
due to truncating the spectrum.

The resulting predictions were remarkably accurate for the size of the data set
(refer to Fig. 8-5). A plot of the actual number of coefficients vs. the predicted
number of coefficients (see Fig. 8-6) illustrates how near the points fall to the straight
line with slope equal to one, which indicates perfect predictions. Reference to Fig. 8-5
shows that the PSD 31 Statistic is the most significant in terms of predicting the number
of coefficients that must be retained in order to limit the MSE due to truncation of the
spectrum to 0.25%. This is intuitively reasonable, since the variable being predicted is
related to the area under the tail of the power spectrum, and hence, somewhat to the
shape of the power spectrum.

From observing Case 3, it can be seen that given the correct set of statistics, the
stepwise regression method works well to find an equation that predicts some image
parameter accurately. The implication to be drawn in the first two cases is not as clear,
since equations were not produced that made accurate predictions. The set of image
statistics may or may not have been sufficient. Insufficient statistics is certainly a
possibility in explaining the poor predictions. Another explanation could be that the
relationship between the statistics and MSE needs to be expressed by something other
than a linear model. A third explanation mentioned earlier is that Cases 1 and 2 lack a
constant parameter in the experiment, while Case 3 is always related to 0.25% MSE.

.b.
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Section 9

SUGGESTION FOR FUTURE INVESTIGATION

As a result of the work performed in this study, three particular areas appear to
be candidates for additional investigation. These areas are: (1) The performance
prediction of single algorithms, (2) The prediction of best algorithm for a single image
subset, and (3) The generation of an adaptive compression algorithm driven by
statistical measurements. Each of these areas is discussed briefly in the following.

9.1 PERFORMANCE PREDICTION FOR SINGLE ALGORITHMS

Unfortunately it was not until late in this current effort that performance predictions
of a single algorithm were started. As is obvious from the previous discussions, this
effort was not completed. The results seem to imply (although not necessarily) that the
right set of features has not yet been found for this process. Of the 37 measurements
used in the regression analysis, only a few appear to be significant for this task. At
the same time, the prediction performance is marginal at best. As in any pattern
recognition problem, the selection of features is the most difficult and the most sig-
nificant part of the problem. One entire set of features unused in this effort is that of
textural properties. Most textural features are based on statistics of co-occurance
matrices that describe how often one gray tone will appear in a specific spatial relation-
ship to another gray tone. As evidenced in recent publications from the Image
Understanding Workshop9 , as well as in the open literature, the importance of textural
measures is becoming more widely accepted.

Another deficiency in the current attempt to predict performance is the limited
number of images used. For a statistical evaluation of this sort, 200 images would be
more appropriate than 20. Obtaining, digitizing, and computing all the features on such
a large data set is a major undertaking.

9.2 SELECTION OF ALGORITHM BY PERFORMANCE PREDICTION

Once all of the data is gathered and some assurance is obtained that a reasonable
set of features is available for analysis, a regression equation could be generated for as
many different algorithms as desired. This, however, requires that all the images to be
used in the analysis be compressed with each algorithm, and a performance measure
computed on each reconstructed output image at the same data rate. An alternative
approach would be to locate the minimum bit rate required for each algorithm to pro-
duce a reconstructed image with a constant quality. This could be done readily if the

Le 9 Proceedings of Image Understanding Workshop, November 1978 and April 1979,
Science Applications, Inc., Report Numbers SAI-79-814-WA and SAI-80-895-WA.
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quality measure is the MSE due to truncating the spectrum. However, there is no
guarantee that this MSE correlates with any subjective evaluation by human observers.
Locating the minimum bit rate for a constant quality can be a major effort if subjective
evaluation and ranking are the quality criteria. Assuming that this data could be ob-
tained, a regression equation could be generated to predict the required bits per pixel
necessary to produce a given quality for each algorithm. For an image that is not part
of the training set, the bit rate for each algorithm would be predicted. The algorithm
for which a minimum bit rate is predicted would be the selected algorithm for that image.

9.3 STATISTICAL DRIVEN ADAPTIVE COMPRESSION ALGORITHM

Many adaptive compression schemes utilize the ac energy as the parameter that
controls the adaptivity. It may be profitable to investigate the use of a set of features
other than energy to control an adaptive algorithm. For example, if a 2D-DCT
algorithm with 16 x 16 picture element blocks is used, a set of features would be com-
puted separately for each 16 x 16 area of the image. These features would be used to

select an appropriate data rate for each transform block and to control the way in which
bits are distributed within the transform block. One set of features would be used in a

regression equation to select an appropriate data rate for each transform block. A
second set of features could be used in a separate process to dictate the way in which
the bits are distributed within the transform block. The features used for the two
functions, (L e., setting the bit rate and controlling the assignment of bits) are clearly
different since the optimization of the bit assignment requires directionality in the features.

The design of such a system should be straightforward even though a sizable effort
is required to select the proper features and generate the regression equations. Care
would have to be taken to ensure that the features selected for use in such a process
were within reason in terms of computation requirements, otherwise a hardware
implementation would be impractical.
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Appendix A

MTF COMPUTATION FROM EDGE DATA

In order to determine the MTF of the input transparencies, available edges were
located on the film. Edges at random orientation in the film were scanned on a
Joyce-Loebl microdensitometer to obtain the edge response function E (,q). If the edge
response function is normalized to unit height and U ('1) is the unit step function at the
origin, the complex modulation transfer function can be computed from:

MTF(x) = 1 + x f [E() - U(q)] sin ix dil

- x J [E(n) - U (n)] cos Yx dn

This expression comes from the relations between the complex MTF, the line spread
function S(q), and the edge response E(n) given below:

ds (ii) = d-- E(ii)

MTF (x) = f S(ii) e3p x dn

One question that arises in computing these MTF curves is whether the sampling
interval used on the microdensitometer is influencing the results. To ensure the
validity of the results, a perfect edge with slope K as shown in Fig. A-1 was examined
to determine the sample spacing required to compute the correct MTF for the edge.
For the edge in Fig. A-i, which is symmetrical about the midpoint, the MTF is given by:

MTF (x) 2K sin 2K

X 2K

The zero crossings of the MTF occur when

2sin 0 forx >0
2K
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E (z)= Kz -I 05

E(z) = I

oI I 0

0
-0.5 0 0.5

K

Figure A-1 Perfect edge with slope equal to K.

The first zero crossing occurs when

x = 2wK
or

f = K cycles/mm

Figure A-2 shows the MTF computed for a perfect edge with slope K = 50, using a
sampling frequency of 100 cycles/mm, which is twice the frequency at the first zero
crossing of the MTF. As can be seen, a sampling frequency equal to 2k cycles/mm is
inadequate to compute the MTF. Figure A-3 shows that the same MTF computed with
the edge sampled at 4k cycles/mm Is very close to the expected result.

The slopes of the edges that were scanned to produce the MTF data in Fig. 3-1
through 3-6 were estimated and are shown in Table A-1. The steepest edge that was
used had an approximate slope of 27 and was sampled with a spacing equal to 0.005 mm.
The corresponding MTF is shown in Fig. A-4. As an additional check on the process,
this MTF was computed using a sample spacing equal to 1.0 mm (half the sampling
frequency). The results in Figure A-5 are essentially the same, which Implies that the
Interval 0.005 mm is more than adequate.

A similar check was made for one of the steepest edges for which we used a
sampling interval of 0.01. From these data we can conclude that the MTF computaticns
were not significantly affected by the sampling interval used.

I.
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TABLE A-1. ESTIMATED SLOPE OF SCANNED EDGES, WITH SAMPLING
INTERVAL USZD AND THE MAXIMUM SAMPLDI3 INTERVAL
DEFINED BY fa - 4 x SLOPE (Mycles/mm).

Sampling Max sampling
Edge Estimnated Interval Interval

]kleUifmlatlon sope Used = 1/(4 x slope)

4109 15.58 .01 .016

4120 17.09 .01 .0146

4131 #1 24.39 .005 .0102

4131 #2 13.57 .01 .0184

4134 #1 27.08 .005 .0092

4134 t2 15.89 .01 .0157

4137 #1 16.50 .01 .0151

4137 #2 17.16 .01 .0145

4134 #4 Top 10.51 .01 .0237

4134 #4 Middle 16.89 .01 .0148

4134 #4 Bottiom 17.22 .01 .0145

r

4134 #4 Average 14.77 .01 .0169
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Appendix B

CALLIER Q CORRECTION FOR DATA PROPORTIONAL TO
DENSITY OR TRANSMITTANCE

The film density measured by a denitometr is difse density. The scanner output
Is related to specular density, since the optics will not collect all the light passing
throgh the film due to scattering. Thus the necessary modification to the data is a
Call'er Q correction process, whose purpose Is to remove the effects of measurement
differences between difmuse density and specular density.- The Calller Q of an equipment
is determined by scannin a known step wedge with the device. This results In a plot of
diffuse density of the input material vs. the specular density measurement at the output
of the scanner. The slope of the line is the Q. This output masurement may be digital
counts from an A/D converter or it may be relative numbers on a known linear scale as
might be obtained from a scannin microdensitometer. It Is Important to know whether
the measuring device is producing outputs proportional to density or to transmittance,
since the correction Is different for the two cases.

In order to correct the data so that the Q Is equal to unity (I. e. the specular density
equals difuse density), the specular density data Is divided by Q.

Ddiffuse = Dspec/Q

The equivalent correction for an equipment output proportional to transmittance Is
obtained as follows. Since transmittance is related to density by

D = 10 log I

1
T 0D/10

The corrected transmittance TD is given by:

10 1010

Consequently, the Caller Q correction for output data proportional to density is
obtaned by dvidlng by Q I..:

• " ~~Corrected data = o~xtdt

Q

..... 
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The correction for output data proportional to tinamttance I. gven by:

Corrected data = (output data)

Renormalzatlon after Q correction must be such that the uncorrected and corrected
data are Identical for a denilty of zero.
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